کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8256499 | 1534035 | 2014 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Invariant parameterization and turbulence modeling on the beta-plane
ترجمه فارسی عنوان
پارامترهای غیر قابل پیش بینی و مدلسازی آشفتگی بر روی بتا
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
چکیده انگلیسی
Invariant parameterization schemes for the eddy-vorticity flux in the barotropic vorticity equation on the beta-plane are constructed and then applied to turbulence modeling. This construction is realized by the exhaustive description of differential invariants for the maximal Lie invariance pseudogroup of this equation using the method of moving frames, which includes finding functional bases of differential invariants of arbitrary order, a minimal generating set of differential invariants and a basis of operators of invariant differentiation in an explicit form. Special attention is paid to the problem of two-dimensional turbulence on the beta-plane. It is shown that classical hyperdiffusion as used to initiate the energy-enstrophy cascades violates the symmetries of the vorticity equation. Invariant but nonlinear hyperdiffusion-like terms of new types are introduced and then used in the course of numerically integrating the vorticity equation and carrying out freely decaying turbulence tests. It is found that the invariant hyperdiffusion scheme is closely reproducing the theoretically predicted kâ1 shape of enstrophy spectrum in the enstrophy inertial range. By presenting conservative invariant hyperdiffusion terms, we also demonstrate that the concepts of invariant and conservative parameterizations are consistent.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 269, 15 February 2014, Pages 48-62
Journal: Physica D: Nonlinear Phenomena - Volume 269, 15 February 2014, Pages 48-62
نویسندگان
Alexander Bihlo, Elsa Dos Santos Cardoso-Bihlo, Roman O. Popovych,