کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
826764 | 907950 | 2011 | 11 صفحه PDF | دانلود رایگان |

We recorded transient movements, i.e. opening and closing, of beetle elytra. The beetles were tethered from below and filmed under a skew mirror; two markers were glued on each elytron at the apex and at the base. Body-fixed 3D traces of the apical and basal markers were reconstructed. The trace of the basal marker was, as a rule, non-parallel to the apical trace. The costal edge of the elytron uniformly supinated in the course of adduction of the apical marker. We found two essential attributes of double rotation: (1) the elytron to body articulation is approximately a spherical mechanism; (2) transient opening and closing possess single degree of freedom. The double rotation was modeled with two mechanisms: (1) a flexagon model of the Haas and Wootton's type simulated the elytral movement relative to the movement of one facet of the flexagon; (2) a screw and nut model provided traces as two sectors of a helical thread, one sector was phase shifted with respect to other one. Screw guideways in a spherical mechanism give rise to discrepancies. Exact solution for a spherical mechanism with two guideways was proposed. The modeling revealed the attribute (3): the elytron is actuated by two linked but differently directed drives. Experimental investigations on the elytron to body articulation may be oriented at search of those mechanisms.
Journal: Journal of Bionic Engineering - Volume 8, Issue 4, December 2011, Pages 395-405