کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
828398 1470300 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of mechanical strength of cork under compression using machine learning techniques
ترجمه فارسی عنوان
پیش بینی قدرت مکانیکی چوب پنبه تحت فشرده سازی با استفاده از تکنیک های یادگیری ماشین
کلمات کلیدی
چوب پنبه، ویژگی های مکانیکی، شبکه عصبی، رگرسیون خطی چندگانه، کارت، خوشه
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
چکیده انگلیسی


• Machine learning techniques are used to predict mechanical behaviour of cork.
• Compressive stress at 30% strain can be predicted with neural networks.
• Heterogeneity of cork complicates the prediction of some mechanical properties.

In this study, the accuracy of mathematical techniques such as multiple linear regression, clustering, decision trees (CART) and neural networks was evaluated to predict Young’s modulus, compressive stress at 30% strain and instantaneous recovery velocity of cork. Physical properties, namely test direction, density, porosity and pore number, as well as test direction were used as input. The better model was achieved when a classification problem was performed. Only compressive stress at 30% strain can be predicted with neural networks with an error rate of about 20%. The prediction of Young’s modulus and instantaneous recovery velocity led to unacceptably high error rates due to the heterogeneity of the material.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials & Design - Volume 82, 5 October 2015, Pages 304–311
نویسندگان
, , , , , ,