کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
828479 1470299 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computed tomography for characterization of fatigue performance of selective laser melted parts
ترجمه فارسی عنوان
توموگرافی کامپیوتری برای مشخص کردن عملکرد خستگی اجزای ذرات ریخته گری
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
چکیده انگلیسی


• Critical internal defects in additive manufactured parts were detected by CT.
• FE analysis of CT data is efficacious in modeling stress concentration factor.
• Defects near to boundary cause a higher stress concentration factor.
• Regional re-melting scanning strategy is proposed for fatigue applications.

Components manufactured by maturing additive manufacturing techniques like selective laser melting (SLM) find potential competence in several applications especially in automotive and aerospace industries as well as in medical applications like customized implants. The manufactured parts possess better, or at least comparable, yield strength and tensile strength values accompanied with a reduced fracture strain. Though their fatigue performance in the as-built condition is impaired due to surface roughness, it can be sufficiently improved by post-process surface treatments. Even then, there exists a high fatigue scatter due to remnant porosity. Characterization of remnant porosity is necessary for a reliable component design to be employed for cyclic applications. Computed tomography has been used in this study to evaluate the influence of porosity-incited stress concentration on the corresponding fatigue scatter. Microscopic analysis, tensile tests, fatigue tests with continuous load increase and constant amplitudes as well as finite element analysis have been used for this purpose. Critical pore characteristics and a modification in the process scanning strategy have been recommended so that the components can be reliably used in fatigue-loaded applications.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials & Design - Volume 83, 15 October 2015, Pages 661–669
نویسندگان
, , , , , , ,