کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8318167 1538967 2018 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Phylogenetic analysis of cnidarian peroxiredoxins and stress-responsive expression in the estuarine sea anemone Nematostella vectensis
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Phylogenetic analysis of cnidarian peroxiredoxins and stress-responsive expression in the estuarine sea anemone Nematostella vectensis
چکیده انگلیسی
Peroxiredoxins (PRXs) are a family of antioxidant enzymes present in all domains of life. To date, the diversity and function of peroxiredoxins within animals have only been studied in a few model species. Thus, we sought to characterize peroxiredoxin diversity in cnidarians and to gain insight into their function in one cnidarian-the sea anemone Nematostella vectensis. Phylogenetic analysis using all six known PRX subfamilies (PRX1-4, PRX5, PRX6, PRXQ/AHPE1, TPX, BCP-PRXQ) revealed that like bilaterians, cnidarians contain representatives from three subfamilies (PRX1-4, PRX5, PRX6). Within the PRX1-4 subfamily, cnidarian sequences fall into two clades: PRX4, and a cnidarian-specific clade, which we term CNID-PRX. This phylogenetic analysis demonstrates that the three PRX subfamilies present in Bilateria were also present in the last common ancestor of the Cnidaria and Bilateria, and further that diversification of the PRX1-4 subfamily has occurred within the cnidarian lineage. We next examined the impact of decreased salinity, increased temperature, and peroxide exposure on the expression of four prx genes in N. vectensis (cnid-prx, prx4, prx5, and prx6). These genes exhibited unique expression patterns in response to these environmental stressors. Expression of prx4 decreased with initial exposure to elevated temperature, cnid-prx increased with exposure to elevated temperatures as well as with hydrogen peroxide exposure, and expression of all prxs transiently decreased with reduced salinity. Predicted subcellular localization patterns also varied among PRX proteins. Together these results provide evidence that peroxiredoxins in N. vectensis serve distinct physiological roles and lay a groundwork for understanding how peroxiredoxins mediate cnidarian developmental processes and environmental responses.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology - Volume 221, July 2018, Pages 32-43
نویسندگان
, , ,