کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
836980 1470396 2017 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in R3
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in R3
چکیده انگلیسی
In this paper, we study the multiplicity of solutions with a prescribed L2-norm for a class of nonlinear Kirchhoff type problems in R3−(a+b∫R3|∇u|2)Δu−λu=|u|p−2u, where a,b>0 are constants, λ∈R, p∈(143,6). To get such solutions we look for critical points of the energy functional Ib(u)=a2∫R3|∇u|2+b4(∫R3|∇u|2)2−1p∫R3|u|p restricted on the following set Sr(c)={u∈Hr1(R3):‖u‖L2(R3)2=c},c>0. For the value p∈(143,6) considered, the functional Ib is unbounded from below on Sr(c). By using a minimax procedure, we prove that for any c>0, there are infinitely many critical points {unb}n∈N+ of Ib restricted on Sr(c) with the energy Ib(unb)→+∞(n→+∞). Moreover, we regard b as a parameter and give a convergence property of unb as b→0+.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 33, February 2017, Pages 19-32
نویسندگان
, ,