کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
836980 | 1470396 | 2017 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in R3
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we study the multiplicity of solutions with a prescribed L2-norm for a class of nonlinear Kirchhoff type problems in R3â(a+bâ«R3|âu|2)Îuâλu=|u|pâ2u, where a,b>0 are constants, λâR, pâ(143,6). To get such solutions we look for critical points of the energy functional Ib(u)=a2â«R3|âu|2+b4(â«R3|âu|2)2â1pâ«R3|u|p restricted on the following set Sr(c)={uâHr1(R3):âuâL2(R3)2=c},c>0. For the value pâ(143,6) considered, the functional Ib is unbounded from below on Sr(c). By using a minimax procedure, we prove that for any c>0, there are infinitely many critical points {unb}nâN+ of Ib restricted on Sr(c) with the energy Ib(unb)â+â(nâ+â). Moreover, we regard b as a parameter and give a convergence property of unb as bâ0+.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 33, February 2017, Pages 19-32
Journal: Nonlinear Analysis: Real World Applications - Volume 33, February 2017, Pages 19-32
نویسندگان
Xiao Luo, Qingfang Wang,