کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
837003 1470399 2016 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stability behaviors of Leray weak solutions to the three-dimensional Navier–Stokes equations
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Stability behaviors of Leray weak solutions to the three-dimensional Navier–Stokes equations
چکیده انگلیسی

This paper is devoted to the investigation of stability behaviors of Leray weak solutions to the three-dimensional Navier–Stokes equations. For a Leray weak solution of the Navier–Stokes equations in a critical Besov space, it is shown that the Leray weak solution is uniformly stable with respect to a small perturbation of initial velocity and external forcing. If the perturbation is not small, the perturbed weak solution converges asymptotically to the original weak solution as the time tends to the infinity. Additionally, an energy equality and weak–strong uniqueness for the three-dimensional Navier–Stokes equations are derived. The findings are mainly based on the estimations of the nonlinear term of the Navier–Stokes equations in a Besov space framework, the use of special test functions and the energy estimate method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 30, August 2016, Pages 41–58
نویسندگان
, ,