کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
837126 | 1470409 | 2014 | 7 صفحه PDF | دانلود رایگان |
In this work a nonlinear eigenvalue problem for a nonlinear autonomous ordinary differential equation of the second order is considered. This problem describes the process of propagation of transverse-electric electromagnetic waves along a plane dielectric waveguide with nonlinear permittivity. We demonstrate, as far as we know, a new method that allows one to derive an equation w.r.t. spectral parameter (the dispersion equation) which contains all necessary information about the eigenvalues. The method is based on a simple idea that the distance between zeros of a periodic solution to the differential equation is the same for the adjacent zeros. This method has no connections with the perturbation theory or the notion of a bifurcation point. Theorem of equivalence between the eigenvalue problem and the dispersion equation is proved. Periodicity of the eigenfunctions is proved, a formula for the period is found, and zeros of the eigenfunctions are determined. The formula for the distance between adjacent zeros of any eigenfunction is given. Also theorems of existence and localization of the eigenvalues are proved.
Journal: Nonlinear Analysis: Real World Applications - Volume 20, December 2014, Pages 52–58