کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
837126 1470409 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Integral dispersion equation method to solve a nonlinear boundary eigenvalue problem
ترجمه فارسی عنوان
روش معادلات پراکنش یکپارچه برای حل مسئله عددی مرزی غیر خطی
کلمات کلیدی
معادلات دیفرانسیل غیر خطی معمولی، مشکل خاصی از مرز غیر خطی، خصوصیات جداگانه، دوره ای از راه حل ها، توزیع صفرها
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
چکیده انگلیسی

In this work a nonlinear eigenvalue problem for a nonlinear autonomous ordinary differential equation of the second order is considered. This problem describes the process of propagation of transverse-electric electromagnetic waves along a plane dielectric waveguide with nonlinear permittivity. We demonstrate, as far as we know, a new method that allows one to derive an equation w.r.t. spectral parameter (the dispersion equation) which contains all necessary information about the eigenvalues. The method is based on a simple idea that the distance between zeros of a periodic solution to the differential equation is the same for the adjacent zeros. This method has no connections with the perturbation theory or the notion of a bifurcation point. Theorem of equivalence between the eigenvalue problem and the dispersion equation is proved. Periodicity of the eigenfunctions is proved, a formula for the period is found, and zeros of the eigenfunctions are determined. The formula for the distance between adjacent zeros of any eigenfunction is given. Also theorems of existence and localization of the eigenvalues are proved.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 20, December 2014, Pages 52–58
نویسندگان
,