کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
837262 1470413 2014 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bifurcations and global dynamics in a predator–prey model with a strong Allee effect on the prey, and a ratio-dependent functional response
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Bifurcations and global dynamics in a predator–prey model with a strong Allee effect on the prey, and a ratio-dependent functional response
چکیده انگلیسی

We extend a previous study of a predator–prey model with strong Allee effect on the prey in which the functional response is a function of the ratio of prey to predator. We prove that the solutions are always bounded and non-negative, and that the species can always tend to long-term extinction. By means of bifurcation analysis and advanced numerical techniques for the computation of invariant manifolds of equilibria, we explain the consequences of the (dis)appearance of limit cycles, homoclinic orbits, and heteroclinic connections in the global arrangement of the phase plane near a Bogdanov–Takens bifurcation. In particular, we find that the Allee threshold in the two-dimensional system is given as the boundary of the basin of attraction of an attracting positive equilibrium, and determine conditions for the mutual extinction or survival of the populations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 16, April 2014, Pages 235–249
نویسندگان
, , ,