کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
837418 1470414 2014 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gevrey regularity for solutions of the non-cutoff Boltzmann equation: The spatially inhomogeneous case
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Gevrey regularity for solutions of the non-cutoff Boltzmann equation: The spatially inhomogeneous case
چکیده انگلیسی

In this paper we consider the non-cutoff Boltzmann equation in the spatially inhomogeneous case. We prove the propagation of Gevrey regularity for the so-called smooth Maxwellian decay solutions to the Cauchy problem of spatially inhomogeneous Boltzmann equation, and obtain Gevrey regularity of order 1/(2s)1/(2s) in the velocity variable vv and order 11 in the space variable xx. The strategy relies on our recent results for the spatially homogeneous case [T.-F. Zhang and Z. Yin, Gevrey regularity of spatially homogeneous Boltzmann equation without cutoff, J. Differential Equations 253 (4) (2012), 1172–1190. http://dx.doi.org/10.1016/j.jde.2012.04.023]. Rather, we need much more intricate analysis additionally in order to handle with the coupling of the double variables. Combining with the previous result mentioned above, it gives a characterization of the Gevrey regularity of the particular kind of solutions to the non-cutoff Boltzmann.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 15, January 2014, Pages 246–261
نویسندگان
, ,