کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
837512 | 908342 | 2012 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Rayleigh dissipation from the general recurrence of metrics in path spaces
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Given a pair (metric gg, symmetric 2-covariant tensor field HH though as a Rayleigh dissipation) on a path space (manifold MM, semispray SS), the family of nonlinear connections NN such that HH equals the dynamical derivative of gg with respect to (S,N)(S,N) is determined by using the Obata tensors. In this way, we generalize the case of metric nonlinear connections as well as that of recurrent metrics. As applications, we treat firstly the case of Finslerian (α,β)(α,β)-metrics finding all nonlinear connections for which the associated Finsler–Sasaki metric is exactly the dynamical derivative of the Riemannian–Sasaki metric. Secondly, we apply our results for the case of Beil metrics used in Relativity and field theories.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 13, Issue 4, August 2012, Pages 1551–1561
Journal: Nonlinear Analysis: Real World Applications - Volume 13, Issue 4, August 2012, Pages 1551–1561
نویسندگان
Mircea Crasmareanu,