کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
837724 908347 2010 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Critical values of stability and Hopf bifurcations for a delayed population model with delay-dependent parameters
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Critical values of stability and Hopf bifurcations for a delayed population model with delay-dependent parameters
چکیده انگلیسی

In this paper we consider a delayed population model with delay-dependent parameters. Its dynamics are studied in terms of stability and Hopf bifurcations. We prove analytically that the positive equilibrium switches from being stable to unstable and then back to stable as the delay ττ increases, and Hopf bifurcations occur finite times between the two critical values of stability changes. Moreover, the critical values for stability switches and Hopf bifurcations can be analytically determined. Using the perturbation approach and Floquet technique, we also obtain an approximation to the bifurcating periodic solution and derive the formulas for determining the direction and stability of the Hopf bifurcations. Finally, we illustrate our results with some numerical examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 11, Issue 1, February 2010, Pages 341–355
نویسندگان
, , ,