کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
837747 908347 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Existence and global attractivity of positive periodic solutions of Lotka–Volterra predator–prey systems with deviating arguments
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Existence and global attractivity of positive periodic solutions of Lotka–Volterra predator–prey systems with deviating arguments
چکیده انگلیسی

The model discussed in this paper is described by the following periodic 3-species Lotka–Volterra predator–prey system with several deviating arguments: equation(∗){x1′(t)=x1(t)(r1(t)−a11(t)x1(t−τ11(t))−a12(t)x2(t−τ12(t))−a13(t)x3(t−τ13(t)))x2′(t)=x2(t)(−r2(t)+a21(t)x1(t−τ21(t))−a22(t)x2(t−τ22(t))−a23(t)x3(t−τ23(t)))x3′(t)=x3(t)(−r3(t)+a31(t)x1(t−τ31(t))−a32(t)x2(t−τ32(t))−a33(t)x3(t−τ33(t))), where x1(t)x1(t) denotes the density of prey species at time tt, x2(t)x2(t) and x3(t)x3(t) denote the density of predator species at time tt, ri,aij∈C(R,[0,∞))ri,aij∈C(R,[0,∞)) and τij∈C(R,R)τij∈C(R,R) are ww-periodic functions with r̄i=1w∫0wri(s)ds>0;āij=1w∫0waij(s)>0,i,j=1,2,3. By using Krasnoselskii’s fixed point theorem and the construction of Lyapunov function, a set of easily verifiable sufficient conditions are derived for the existence and global attractivity of positive periodic solutions of (*).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 11, Issue 1, February 2010, Pages 574–583
نویسندگان
, , ,