کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
837778 | 908348 | 2012 | 15 صفحه PDF | دانلود رایگان |

The free and forced vibrations of a Kelvin–Voigt viscoelastic beam, supported by a nonlinear spring are analytically investigated in this paper. The governing equations of motion along with the compatibility conditions are obtained employing Newton’s second law of motion and constitutive relations. The viscoelastic beam material is constituted by the Kelvin–Voigt rheological model, which is a two-parameter energy dissipation model. The method of multiple timescales, a perturbation technique, is employed which ultimately leads to approximate analytical expressions for vibration response, and provides better insight into how the system parameters influence the vibration response. Finally, the effect of system parameters on the linear and nonlinear natural frequencies, vibration responses and frequency-response curves of the system is characterized.
Journal: Nonlinear Analysis: Real World Applications - Volume 13, Issue 3, June 2012, Pages 1319–1333