کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
837793 | 908348 | 2012 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Using the Mellin transform approach, it is shown that, in contrast with integer-order derivatives, the fractional-order derivative of a periodic function cannot be a function with the same period. The three most widely used definitions of fractional-order derivatives are taken into account, namely, the Caputo, Riemann–Liouville and Grunwald–Letnikov definitions. As a consequence, the non-existence of exact periodic solutions in a wide class of fractional-order dynamical systems is obtained. As an application, it is emphasized that the limit cycle observed in numerical simulations of a simple fractional-order neural network cannot be an exact periodic solution of the system.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 13, Issue 3, June 2012, Pages 1489–1497
Journal: Nonlinear Analysis: Real World Applications - Volume 13, Issue 3, June 2012, Pages 1489–1497
نویسندگان
Eva Kaslik, Seenith Sivasundaram,