کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
837798 908349 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An algebraic approach to proving the global stability of a class of epidemic models
ترجمه فارسی عنوان
یک رویکرد جبری برای اثبات ثبات جهانی یک کلاس از مدل های اپیدمی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
چکیده انگلیسی

The global stability of an autonomous differential equation system is an important issue for ecological, epidemiological and virus dynamical models. By means of the direct Lyapunov method and the LaSalle’s Invariance Principle, an algebraic approach to proving the global stability is presented in this paper. This approach gives a logic and possibly programming method on how to choose coefficients aiai based on the classic Lyapunov function of the form ∑i=1nai(xi−xi∗−xi∗lnxi/xi∗) such that the derivative of the Lyapunov function is negative definite or semidefinite. As an application, the global stability of an SVS-SEIR epidemic model with vaccination and the latent stage is examined. The generality of the approach is also shown by discussing certain cases.


► An algebraic approach to proving the global stability is presented.
► This approach provides the method of constructing a Lyapunov function and proving the negative definiteness of the derivative.
► An application on an SVS-SEIR epidemic model is examined.
► The generality of the approach is shown.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 13, Issue 5, October 2012, Pages 2006–2016
نویسندگان
, , , ,