کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
838485 | 908360 | 2007 | 24 صفحه PDF | دانلود رایگان |

A mathematical model of a single isolated artificial neuron with hysterisis is formulated by means of a neutral delay differential equation. The asymptotic and exponential stability of such a model are investigated. Sufficient conditions for the exponential stability of a linear integral difference inequality are obtained. In the absence of hysterisis effect, our model reduces to a known model of a single neuron. Usually asymptotic stability of neutral delay differential equations is studied by means of degenerate Lyapunov–Kravsovskii functionals. In this article, perhaps for the first time exponential stability of a class of neutral differential equations are studied by means of the exponential stability of an affiliated difference inequality. While generalization to Hopfield type hysteretic neural networks is possible, such a generalization is not considered in this article.
Journal: Nonlinear Analysis: Real World Applications - Volume 8, Issue 1, February 2007, Pages 375–398