کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
838893 908373 2007 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Codimension two bifurcations of fixed points in a class of vibratory systems with symmetrical rigid stops
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Codimension two bifurcations of fixed points in a class of vibratory systems with symmetrical rigid stops
چکیده انگلیسی

A vibratory system having symmetrically placed rigid stops and subjected to periodic excitation is considered. Local codimension two bifurcations of the vibratory system with symmetrical rigid stops, associated with double Hopf bifurcation and interaction of Hopf and pitchfork bifurcation, are analyzed by using the center manifold theorem technique and normal form method of maps. Dynamic behavior of the system, near the points of codimension two bifurcations, is investigated by using qualitative analysis and numerical simulation. Hopf-flip bifurcation of fixed points in the vibratory system with a single stop are briefly analyzed by comparison with unfoldings analyses of Hopf-pitchfork bifurcation of the vibratory system with symmetrical rigid stops. Near the value of double Hopf bifurcation there exist period-one double-impact symmetrical motion and quasi-periodic impact motions. The quasi-periodic impact motions are represented by the closed circle and “tire-like” attractor in projected Poincaré sections. With change of system parameters, the quasi-periodic impact motions usually lead to chaos via “tire-like” torus doubling.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 8, Issue 4, September 2007, Pages 1272–1292
نویسندگان
, , , ,