کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
839127 | 908393 | 2007 | 10 صفحه PDF | دانلود رایگان |

In previous article [M. Zhan, Phase-lock equations and its connections to Ginzburg–Landau equations of superconductivity, J. Nonlinear Anal. 42 (2000) 1063–1075], we introduced a system of equations (phase-lock equations) to model the superconductivity phenomena. We investigated its connection to Ginzburg–Landau equations and proved the existence and uniqueness of both weak and strong solutions. In this article, we study the steady-state problem associated with the phase-lock equations. We prove that the steady-state problem has multiple solutions and show that the solution set enjoys some structural properties as proved by Foias and Teman for the Navier–Stokes equations in [C. Foias, R. Teman, Structure of the set of stationary solutions of the Navier–Stokes equations, Commun. Pure Appl. Math. XXX (1977) 149–164].
Journal: Nonlinear Analysis: Real World Applications - Volume 8, Issue 5, December 2007, Pages 1421–1430