کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
83932 158854 2016 11 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel segmentation algorithm for clustered flexional agricultural products based on image analysis
ترجمه فارسی عنوان
یک الگوریتم تقسیم بندی جدید برای محصولات کشاورزی flexional خوشه ای بر اساس تجزیه و تحلیل تصویر
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
محصولات Flexional کشاورزی؛ تقسیم بندی؛ دایره اتصالات؛ تقعر
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• An algorithm to separate clustered flexional agricultural products has been developed.
• The proposed algorithm achieved a mean accuracy of 92.7% in clustered shrimp dataset.
• The algorithm has potential to segment flexional agricultural products.

The problem for segmentation of clustered flexional agricultural products becomes complex when we perform the duties of counting and classification. A novel algorithm based on concavities and circle fitting is proposed to solve these difficulties. Initially, a circular mask method was applied into the contour images of clustered shrimp, to acquire a series of concavity points. Furthermore, the candidate segmentation lines can be acquired by connecting each two concavity points, and then the correctness for each candidate segmentation line was evaluated by designing four acceptance criterions. Additionally, one new point was acquired by combining adaptive two concavity points together to construct a training model to fit the circle equation, which can transform the erroneous straight segmentation lines into proper curve segmentation lines. Finally, the straight and curve segmentation lines were integrated in one clustered image to achieve the segmentation results. Experimental results revealed that the proposed algorithm achieved a mean accuracy of 92.7% across the clustered shrimp dataset. Other two application examples of flexional agricultural products, such as clustered green pepper and shrimp meat, were also used to test the effectiveness of the proposed algorithm. Segmentation results demonstrated it can successfully segment the images, which indicates the proposed algorithm has the potential to separate clustered flexional agricultural products.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers and Electronics in Agriculture - Volume 126, August 2016, Pages 44–54
نویسندگان
,,,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت