کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
842377 908530 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Strong convergence of viscosity approximation methods for finding zeros of accretive operators in Banach spaces
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Strong convergence of viscosity approximation methods for finding zeros of accretive operators in Banach spaces
چکیده انگلیسی

In this paper, we introduce a composite iterative scheme by viscosity approximation method for finding a zero of an accretive operator in Banach spaces. Then, we establish strong convergence theorems for the composite iterative scheme. The main theorems improve and generalize the recent corresponding results of Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51–60], Qin and Su [X. Qin, Y. Su, Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl. 329 (2007) 415–424] and Xu [H.K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006) 631–643] as well as Aoyama et al. [K. Aoyama, Y Kimura, W. Takahashi, M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in Banach spaces, Nonlinear Anal. 67 (2007) 2350–2360], Benavides et al. [T.D. Benavides, G.L. Acedo, H.K. Xu, Iterative solutions for zeros of accretive operators, Math. Nachr. 248–249 (2003) 62–71], Chen and Zhu [R. Chen, Z. Zhu, Viscosity approximation fixed points for nonexpansive and mm-accretive operators, Fixed Point Theory and Appl. 2006 (2006) 1–10] and Kamimura and Takahashi [S. Kamimura, W. Takahashi, Approximation solutions of maximal monotone operators in Hilberts spaces, J. Approx. Theory 106 (2000) 226–240].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 72, Issue 1, 1 January 2010, Pages 449–459
نویسندگان
,