کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
842577 908535 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Positive solutions of a Dirichlet problem for a stationary nonlinear Black–Scholes equation
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Positive solutions of a Dirichlet problem for a stationary nonlinear Black–Scholes equation
چکیده انگلیسی

In this paper, we study the existence of stationary solutions of a nonlinear Black–Scholes type equation that concerns an option pricing model with stochastic volatility. More precisely we consider in Ω⊂(R+)2Ω⊂(R+)2 the nonlinear elliptic PDE 12σ2S2∂2f∂S2+12σ2V2∂2f∂σ2+ρσ2VS∂2f∂S∂σ−12ρσ2V∂f∂σ+rS∂f∂S=rγ(f) with the boundary condition f(S,σ)=h(S,σ)on ∂Ω, where γγ is Hölder continuous and the variables SS and σσ are respectively the asset value and the market volatility [P. Amster, C.G. Averbuj, M.C. Mariani, Solutions to a stationary nonlinear Black–Scholes type equation, J. Math. Anal. Appl. 276 (2002) 231–238; M. Avellaneda, Y. Zhu, Risk neutral stochastic volatility model, Internat. J. Theor. Appl. Finance 1 (1998) 289–310]. We prove the existence of a positive solution ff for this problem assuming certain conditions on the primitive ΓΓ of γγ. The method of the proof, which is based on the construction of upper and lower solutions obtained as solutions of an auxiliary initial value problem, also yields information on the localization of ff.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 71, Issue 10, 15 November 2009, Pages 4624–4631
نویسندگان
, , ,