کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
843842 | 908567 | 2008 | 9 صفحه PDF | دانلود رایگان |

We prove the existence of multiple constant-sign and sign-changing solutions for a nonlinear elliptic eigenvalue problem under Dirichlet boundary condition involving the pp-Laplacian. More precisely, we establish the existence of a positive solution, of a negative solution, and of a nontrivial sign-changing solution when the eigenvalue parameter λλ is greater than the second eigenvalue λ2λ2 of the negative pp-Laplacian, extending results by Ambrosetti–Lupo, Ambrosetti–Mancini, and Struwe. Our approach relies on a combined use of variational and topological tools (such as, e.g., critical points, Mountain-Pass theorem, second deformation lemma, variational characterization of the first and second eigenvalue of the pp-Laplacian) and comparison arguments for nonlinear differential inequalities. In particular, the existence of extremal nontrivial constant-sign solutions plays an important role in the proof of sign-changing solutions.
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 68, Issue 9, 1 May 2008, Pages 2668–2676