کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
844479 908593 2007 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fitzpatrick functions, cyclic monotonicity and Rockafellar’s antiderivative
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Fitzpatrick functions, cyclic monotonicity and Rockafellar’s antiderivative
چکیده انگلیسی

Several deeper results on maximal monotone operators have recently found simpler proofs using Fitzpatrick functions. In this paper, we study a sequence of Fitzpatrick functions associated with a monotone operator. The first term of this sequence coincides with the original Fitzpatrick function, and the other terms turn out to be useful for the identification and characterization of cyclic monotonicity properties. It is shown that for any maximal cyclically monotone operator, the pointwise supremum of the sequence of Fitzpatrick functions is closely related to Rockafellar’s antiderivative. Several examples are explicitly computed for the purpose of illustration. In contrast to Rockafellar’s result, a maximal 3-cyclically monotone operator need not be maximal monotone. A simplified proof of Asplund’s observation that the rotation in the Euclidean plane by π/nπ/n is nn-cyclically monotone but not (n+1)(n+1)-cyclically monotone is provided. The Fitzpatrick family of the subdifferential operator of a sublinear and of an indicator function is studied in detail. We conclude with a new proof of Moreau’s result concerning the convexity of the set of proximal mappings.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 66, Issue 5, 1 March 2007, Pages 1198–1223
نویسندگان
, , , , ,