کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
846324 | 909184 | 2014 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Dictionary learning based sinogram inpainting for CT sparse reconstruction
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In CT (computed tomography), reconstruction from undersampling projection data is often ill-posed and suffers from severe artifact in the reconstructed images. To overcome this problem, this paper proposes a sinogram inpainting method based on recently rising sparse representation technology. In this approach, a dictionary learning based inpainting is used to estimate the missing projection data. The final image can be reconstructed by the analytic filtered back projection (FBP) reconstruction. We conduct experiments using both simulated and real phantom data. Compared to the comparative interpolation method, visual and numerical results validate the clinical potential of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Optik - International Journal for Light and Electron Optics - Volume 125, Issue 12, June 2014, Pages 2862–2867
Journal: Optik - International Journal for Light and Electron Optics - Volume 125, Issue 12, June 2014, Pages 2862–2867
نویسندگان
Si Li, Qing Cao, Yang Chen, Yining Hu, Limin Luo, Christine Toumoulin,