کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8470516 1549998 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sds22 participates in Glc7 mediated Rad53 dephosphorylation in MMS-induced DNA damage in Candida albicans
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیولوژی سلول
پیش نمایش صفحه اول مقاله
Sds22 participates in Glc7 mediated Rad53 dephosphorylation in MMS-induced DNA damage in Candida albicans
چکیده انگلیسی
The protein kinase Rad53 and its orthologs play a fundamental role in regulating the DNA damage checkpoint in eukaryotes. Rad53 is activated by phosphorylation in response to DNA damage and deactivated by dephosphorylation after the damage is repaired. However, the phosphatases involved in Rad53 deactivation are not entirely understood. In this study, by investigating the consequences of overexpressing SDS22, a gene encoding a regulatory subunit of the PP1 phosphatase Glc7, in the human fungal pathogen Candida albicans, we discovered that Sds22 plays an important role in Rad53 dephosphorylation and thus the deactivation of the DNA damage checkpoint. Sds22 cellular levels increase when cells are exposed to DNA damaging agents and decrease after removing the genotoxins. Depletion of Glc7 has similar phenotypes. We provide evidence that Sds2 acts through inhibitory physical association with Glc7. Our findings provide novel insights into the mechanisms for the control of DNA damage checkpoint. Furthermore, SDS22 overexpression reduces C. albicans virulence in a mouse model of systemic infection, suggesting potential targets for developing antifungal drugs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fungal Genetics and Biology - Volume 93, August 2016, Pages 50-61
نویسندگان
, , , , , ,