کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
849045 | 909258 | 2014 | 5 صفحه PDF | دانلود رایگان |
A limited training set usually limits the performance of face recognition in practice. Even sparse representation-based methods which outperform in face recognition cannot avoid such situation. In order to effectively improve recognition accuracy of sparse representation-based methods on a limited training set, a novel virtual samples-based sparse representation (VSSR) method for face recognition is proposed in this paper. In the proposed method, virtual training samples are constructed to enrich the size and diversity of a training set and a sparse representation-based method is used to classify test samples. Extensive experiments on different face databases confirm that VSSR is robust to illumination variations and works better than many representative representation-based face recognition methods.
Journal: Optik - International Journal for Light and Electron Optics - Volume 125, Issue 15, August 2014, Pages 3908–3912