کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
849773 | 909274 | 2014 | 5 صفحه PDF | دانلود رایگان |
In this paper, we present and explore a new hybrid cladding design for improved birefringence and highly nonlinear photonic crystal fibers (PCFs) in a broad range of wavelength bands. The birefringence of the fundamental mode in such a PCF is numerically analyzed using the finite element method (FEM). It is demonstrated that it is possible to design a simple highly nonlinear hybrid PCF (HyPCF) with a nonlinear coefficient of the about 46 W−1 km−1 at a 1.55 μm wavelength. According to simulation, the highest modal birefringence and lowest confinement loss of our proposed structure at the excitation wavelength of λ = 1.55 μm can be achieved at a magnitude of 1.77 × 10−2 and of the order less than 102 dB/km with only five rings of air-holes in the fiber cladding.
Journal: Optik - International Journal for Light and Electron Optics - Volume 125, Issue 3, February 2014, Pages 1011–1015