کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
849918 909275 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A sparse representation method based on kernel and virtual samples for face recognition
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
A sparse representation method based on kernel and virtual samples for face recognition
چکیده انگلیسی

To improve the classification accuracy of face recognition, a sparse representation method based on kernel and virtual samples is proposed in this paper. The proposed method has the following basic idea: first, it extends the training samples by copying the left side of the original training samples to the right side to form virtual training samples. Then the virtual training samples and the original training samples make up a new training set and we use a kernel-induced distance to determine M nearest neighbors of the test sample from the new training set. Second, it expresses the test sample as a linear combination of the selected M nearest training samples and finally exploits the determined linear combination to perform classification of the test sample. A large number of face recognition experiments on different face databases illustrate that the error ratios obtained by our method are always lower more or less than face recognition methods including the method mentioned in Xu and Zhu [21], the method proposed in Xu and Zhu [39], sparse representation method based on virtual samples (SRMVS), collaborative representation based classification with regularized least square (CRC_RLS), two-phase test sample sparse representation (TPTSSR), and the feature space-based representation method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Optik - International Journal for Light and Electron Optics - Volume 124, Issue 23, December 2013, Pages 6236–6241
نویسندگان
, , , , ,