کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
857423 1470729 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimization and Prediction of Parameters in Face Milling of Al-6061 Using Taguchi and ANN Approach
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Optimization and Prediction of Parameters in Face Milling of Al-6061 Using Taguchi and ANN Approach
چکیده انگلیسی

In this paper, Taguchi Method has been used to identify the optimal combination of influential factors in the milling process. Milling experiment has been performed on Al 6061 material, according to Taguchi orthogonal array (L16) for various combinations of controllable parameters viz. speed, feed and depth of cut. The surface roughness (Ra) is measured and recorded for each experimental run and analyzed using Taguchi S/N ratios and the optimum controllable parameter combination is identified. An Artificial neural network (ANN) model has been developed and trained with full factorial design experimental data and a combination of control parameters have been found from ANN for the surface roughness (Ra) value, obtained from confirmation test, for the optimum control parameters which are obtained from Taguchi S/N ratios analysis. Taguchi method and ANN found different sets of optimal combinations but the confirmation test revealed that both got almost same Ra values.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Engineering - Volume 97, 2014, Pages 365-371