کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
860146 1470762 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
RSM and ANN Modeling Approaches For Predicting Average Cutting Speed During WEDM of SiCp/6061 Al MMC
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
RSM and ANN Modeling Approaches For Predicting Average Cutting Speed During WEDM of SiCp/6061 Al MMC
چکیده انگلیسی

This paper describes the response surface methodology (RSM) and artificial neural network (ANN) based mathematical modeling for average cutting speed of SiCp/6061 Al metal matrix composite (MMC) during wire electric discharge machining (WEDM). Four WEDM parameters namely servo voltage (SV), pulse-on time (TON), pulse-off time (TOFF) and wire feed rate (WF) were chosen as machining process parameters. A back propagation neural network was developed to establish the process model. The performance of the developed ANN models were compared with the RSM mathematical models of average cutting speed. The comparison clearly indicates that the ANN models provide more accurate prediction compared to the RSM models. Combined effect of input process parameters on average cutting speed shows that voltage is more significant parameter on avergae cutting speed than pulse-off time and wire feed rate.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Engineering - Volume 64, 2013, Pages 767-774