کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
861787 1470797 2012 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gas Outburst Risk Analysis Based on Pattern Recognition of RSSVM Model
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Gas Outburst Risk Analysis Based on Pattern Recognition of RSSVM Model
چکیده انگلیسی

Coal and gas outburst disasters are usually accompanied by some of the characteristics of events, through the analysis of gas accident monitoring data, we can draw the pattern characteristics of a gas accident, which can highlight the situation in the future identification of gas according to features of the database, support vector machines in a small sample, high-dimensional pattern recognition has shown great advantages, the combination of VC dimension theory and structural risk minimization principle, the limited sample modal learning experience, can effectively achieve the effect of classification and pattern recognition, In combination with rough set theory, the original sample data reduction, support vector machine so as to post the data to facilitate processing and pattern identification, and finally validated through case study and practical validity of the model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Engineering - Volume 29, 2012, Pages 170-173