کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
861808 1470797 2012 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonlinear Process Monitoring Using Dynamic Sparse Kernel Classifier
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Nonlinear Process Monitoring Using Dynamic Sparse Kernel Classifier
چکیده انگلیسی

Nonlinear process monitoring method based on kernel function is effective but has great computation complexity for all training samples are introduced in model training. This paper proposes a novel sparse kernel method based on dynamic sparse kernel classifier (DSKC) for nonlinear dynamic process monitoring. In the proposed method, monitoring model is built using a nonlinear classifier technique based on kernel trick. In order to reduce the complexity of kernel model, a forward orthogonal selection procedure is applied to minimize the leave one out error. A monitoring statistic is developed and confidence limit is computed by kernel density estimation. For identify fault source variables, contribution plot is constructed based on the idea of sensitivity analysis. Simulation of a continuous stirred tank reactor system shows that the proposed method performs better compared with kernel principal component analysis in terms of fault detection performance and computation efficiency.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Engineering - Volume 29, 2012, Pages 295-300