کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
862708 1470796 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Vehicle Classification under Cluttered Background and Mild Occlusion Using Zernike Features
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Vehicle Classification under Cluttered Background and Mild Occlusion Using Zernike Features
چکیده انگلیسی

Vehicle recognition and classification in a multi-environment containing cluttered background and occlusion is an important part of machine vision. The goal of this paper is to build a vehicle classifier that identifies a “car” vehicle from “non-car” amidst complex environment taken from university of Illinois at Urbana-Champaign (UIUC) standard database. The image is divided into sub-blocks of equal size without any pre-processing. The zernike moment features are extracted from each sub-block. The features of the objects are fed to the back-propagation neural classifier after normalization. The performance is compared with various categories of blocking models. Quantitative evaluation shows improved results of 85.2%. A critical evaluation of this approach under the proposed standards is presented.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Engineering - Volume 30, 2012, Pages 201-209