کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8644914 | 1569771 | 2018 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Genomic methylation and transcriptomic profiling provides insights into heading depression in inbred Brassica rapa L. ssp. pekinensis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
ژنتیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Inbreeding depression is the reduction in fitness observed in inbred populations. In plants, it leads to disease, weaker resistance to adverse environmental conditions, inhibition of growth, and decrease of yield. To elucidate molecular mechanisms behind inbreeding depression, we compared global DNA methylation and transcriptome profiles of a normal and a highly inbred heading degenerated variety of the Chinese cabbage (Brassica rapa L. ssp. pekinensis). DNA methylation was reduced in inbred plants, suggesting a change in the epigenetic landscape. Transcriptome analysis by RNA-Seq revealed that genes in auxin-response and synthesis pathways were differentially expressed in the inbreeding depression lines. Interestingly, methylation levels of some of those genes were also changed. Furthermore, endogenous IAA content was decreased in inbred plants, in agreement with expression and methylation data. Chemical inhibition of auxin also replicated the degenerated phenotype in normal plants, while exogenous IAA application had no effect in inbred depression plants, suggesting a more complex mechanism. These data indicate DNA methylation-regulated auxin pathways play a role in establishing inbred depression phenotypes in plants. Our findings reveal new insights into inbreeding depression and leafy head development in Chinese cabbage.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Gene - Volume 665, 30 July 2018, Pages 119-126
Journal: Gene - Volume 665, 30 July 2018, Pages 119-126
نویسندگان
Yan Liu, Cui Xu, Xuebing Tang, Surui Pei, Di Jin, Minghao Guo, Meng Yang, Yaowei Zhang,