کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
870847 1471037 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive kernels and transfer entropy for neural connectivity analysis in EEG signals
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی پزشکی
پیش نمایش صفحه اول مقاله
Adaptive kernels and transfer entropy for neural connectivity analysis in EEG signals
چکیده انگلیسی

This paper aims at better understanding causal relationships between parts of the brain during epileptic seizures. Our objective is to detect effective connectivity, i.e. to discover whether neural activity in a given substructure influences activity in another part of the brain. Recent efforts have been devoted to develop nonlinear and nonparametric approaches, such as transfer entropy (TE), to overcome linear methods limitations. However, building efficient TE estimators still asks open questions. In this study, we propose a new strategy to improve TE estimation by introducing different nonparametric adaptive kernel density estimators. Among all techniques under study, the Gaussian adaptive kernel density estimator based approach presents the best behavior whatever the tested model (autoregressive or physiological model).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IRBM - Volume 34, Issues 4–5, November 2013, Pages 330–336
نویسندگان
, , , ,