کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
875437 910397 2006 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modelling the maximum voluntary joint torque/angular velocity relationship in human movement
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی پزشکی
پیش نمایش صفحه اول مقاله
Modelling the maximum voluntary joint torque/angular velocity relationship in human movement
چکیده انگلیسی

The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In “maximum” voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this “differential activation” in order to calculate the maximum voluntary knee extensor torque as a function of knee angular velocity. Torque data were collected on two subjects during maximal eccentric–concentric knee extensions using an isovelocity dynamometer with crank angular velocities ranging from 50 to 450° s−1. The theoretical tetanic torque/angular velocity relationship was modelled using a four parameter function comprising two rectangular hyperbolas while the activation/angular velocity relationship was modelled using a three parameter function that rose from submaximal activation for eccentric velocities to full activation for high concentric velocities. The product of these two functions gave a seven parameter function which was fitted to the joint torque/angular velocity data, giving unbiased root mean square differences of 1.9% and 3.3% of the maximum torques achieved. Differential activation accounts for the non-hyperbolic behaviour of the torque/angular velocity data for low concentric velocities. The maximum voluntary knee extensor torque that can be exerted may be modelled accurately as the product of functions defining the maximum torque and the maximum voluntary activation level. Failure to include differential activation considerations when modelling maximal movements will lead to errors in the estimation of joint torque in the eccentric phase and low velocity concentric phase.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Biomechanics - Volume 39, Issue 3, 2006, Pages 476–482
نویسندگان
, , ,