کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8845921 1617198 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Recruitment forecasting of yellowfin tuna in the eastern Pacific Ocean with artificial neuronal networks
ترجمه فارسی عنوان
پیش بینی استخدام ماهی تن زردآلو در اقیانوس آرام اقیانوس آرام با استفاده از شبکه های عصبی مصنوعی
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
چکیده انگلیسی
The recruitment of yellowfin tuna in the eastern Pacific Ocean is modeled based on oceanographic as well as biological parameters, using two nonlinear autoregressive network models with exogenous inputs (NARX). In the first model (Model 1) the quarterly recruitment is modeled considering eastern Pacific global oceanographic conditions: the Southern Oscillation Index (SOI), the Pacific Decadal Oscillation (PDO), and spawners biomass. In Model 2, recruitment is predicted based on sea surface temperature, wind magnitude, and oceanic current magnitude of a smaller area within the eastern Pacific Ocean, considered as relevant for spawning and recruitment, and total spawners biomass. The correlation coefficient between the ANN recruitment estimate and the “real” recruitment is r > 0.80 in both models. Series of sensitivity analysis suggest that the SOI and the sea surface temperature are the most important variables for the recruitment in Model 1 and Model 2 also show that warm sea surface favors recruitment. A forecasting model under different climatological scenarios indicates that the recruitment of yellowfin tuna could be higher in the period 2015-2020 compared to the ones registered in the period 2009-2013.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecological Informatics - Volume 36, November 2016, Pages 106-113
نویسندگان
, , ,