کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8875938 1623707 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Automated detection and identification of white-backed planthoppers in paddy fields using image processing
ترجمه فارسی عنوان
تشخیص خودکار و شناسایی کارخانه های سفید پشتی در زمینه های برنج با استفاده از پردازش تصویر
کلمات کلیدی
گیاهپور سفید پشتی، مرحله توسعه، شناسایی خودکار و شناسایی، پردازش تصویر، هیستوگرام ویژگی های گرادیان گرا ویژگی های گابور، خصوصیات باینری محلی،
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
چکیده انگلیسی
A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Traditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horváth)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Integrative Agriculture - Volume 16, Issue 7, July 2017, Pages 1547-1557
نویسندگان
, , , , , ,