کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8876523 | 1623755 | 2018 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Predicting membrane protein types by incorporating a novel feature set into Chou's general PseAAC
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Membrane proteins are vital type of proteins that serve as channels, receptors and energy transducers in a cell. They perform various important functions, which are mainly associated with their types. They are also attractive targets of drug discovery for various diseases. So predicting membrane protein types is a crucial and challenging research area in bioinformatics and proteomics. Because of vast investigation of uncharacterized protein sequences in databases, customary biophysical techniques are extremely tedious, costly and vulnerable to mistakes. Subsequently, it is very attractive to build a vigorous, solid, proficient technique to predict membrane protein types. In this work, a novel feature set Exchange Group Based Protein Sequence Representation (EGBPSR) is proposed for classification of membrane proteins with two new feature extraction strategies known as Exchange Group Local Pattern (EGLP) and Amino acid Interval Pattern (AIP). Imbalanced dataset and large dataset are often handled well by decision tree classifiers. Since imbalanced dataset are taken, the performance of various decision tree classifiers such as Decision Tree (DT), Classification and Regression Tree (CART), ensemble methods such as Adaboost, Random Under Sampling (RUS) boost, Rotation forest and Random forest are analyzed. The overall accuracy achieved in predicting membrane protein types is 96.45%.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Theoretical Biology - Volume 455, 14 October 2018, Pages 319-328
Journal: Journal of Theoretical Biology - Volume 455, 14 October 2018, Pages 319-328
نویسندگان
E. Siva Sankari, D. Manimegalai,