کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8895460 1630325 2017 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mapping Soil Organic Carbon Using Local Terrain Attributes: A Comparison of Different Polynomial Models
ترجمه فارسی عنوان
نقشه برداری کربن آلی خاک با استفاده از ویژگی های محلی محلی: مقایسه مدل های چندجمله ای مختلف
کلمات کلیدی
اعتبار سنجی متقابل، نقشه برداری خاک دیجیتال، رگرسیون وزنی جغرافیایی، کریگینگ با رانش خارجی، دقت نقشه برداری،
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش خاک شناسی
چکیده انگلیسی
Local terrain attributes, which are derived directly from the digital elevation model, have been widely applied in digital soil mapping. This study aimed to evaluate the mapping accuracy of soil organic carbon (SOC) concentration in 2 zones of the Heihe River in China, by combining prediction methods with local terrain attributes derived from different polynomial models. The prediction accuracy was used as a benchmark for those who may be more concerned with how accurately the variability of soil properties is modeled in practice, rather than how morphometric variables and their geomorphologic interpretations are understood and calculated. In this study, 2 neighborhood types (square and circular) and 6 representative algorithms (Evans-Young, Horn, Zevenbergen-Thorne, Shary, Shi, and Florinsky algorithms) were applied. In general, 35 combinations of first- and second-order derivatives were produced as candidate predictors for soil mapping using two mapping methods (i.e., kriging with an external drift and geographically weighted regression). The results showed that appropriate local terrain attribute algorithms could better capture the spatial variation of SOC concentration in a region where soil properties are strongly influenced by the topography. Among the different combinations of first- and second-order derivatives used, there was a best combination with a more accurate estimate. For different prediction methods, the relative improvement in the two zones varied between 0.30% and 9.68%. The SOC maps resulting from the higher-order algorithms (Zevenbergen-Thorne and Florinsky) yielded less interpolation errors. Therefore, it was concluded that the performance of predictive methods, which incorporated auxiliary variables, could be improved by attempting different terrain analysis algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pedosphere - Volume 27, Issue 4, August 2017, Pages 681-693
نویسندگان
, , , , , ,