کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8895929 | 1630406 | 2018 | 38 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Symplectic, product and complex structures on 3-Lie algebras
ترجمه فارسی عنوان
ساختارهای سیمپلتیک، محصول و پیچیده در جبرهای 3 بعدی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
چکیده انگلیسی
In this paper, first we introduce the notion of a phase space of a 3-Lie algebra and show that a 3-Lie algebra has a phase space if and only if it is sub-adjacent to a 3-pre-Lie algebra. Then we introduce the notion of a product structure on a 3-Lie algebra using the Nijenhuis condition as the integrability condition. A 3-Lie algebra enjoys a product structure if and only if it is the direct sum (as vector spaces) of two subalgebras. We find that there are four types special integrability conditions, and each of them gives rise to a special decomposition of the original 3-Lie algebra. They are also related to O-operators, Rota-Baxter operators and matched pairs of 3-Lie algebras. Parallelly, we introduce the notion of a complex structure on a 3-Lie algebra and there are also four types special integrability conditions. Finally, we add compatibility conditions between a complex structure and a product structure, between a symplectic structure and a paracomplex structure, between a symplectic structure and a complex structure, to introduce the notions of a complex product structure, a para-Kähler structure and a pseudo-Kähler structure on a 3-Lie algebra. We use 3-pre-Lie algebras to construct these structures. Furthermore, a Levi-Civita product is introduced associated to a pseudo-Riemannian 3-Lie algebra and deeply studied.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 508, 15 August 2018, Pages 256-300
Journal: Journal of Algebra - Volume 508, 15 August 2018, Pages 256-300
نویسندگان
Yunhe Sheng, Rong Tang,