کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8896427 | 1630415 | 2018 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Krull dimension of power series rings over non-SFT domains
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A ring D is called an SFT ring if for each ideal I of D, there exist a finitely generated ideal J of D with JâI and a positive integer k such that akâJ for all aâI. For a cardinal number α and a ring D, we say that dimâ¡Dâ¥Î± if D has a chain of prime ideals with length â¥Î±. Arnold showed that if D is a non-SFT ring, then dimâ¡DãXãâ¥âµ0. Let C be the class of non-SFT domains. The class C includes the class of finite-dimensional nondiscrete valuation domains, the class of non-Noetherian almost Dedekind domains, the class of completely integrally closed domains that are not Krull domains, the class of integral domains with non-Noetherian prime spectrum, and the class of integral domains with a nonzero proper idempotent ideal. The ring of algebraic integers, the ring of integer-valued polynomials on Z, and the ring of entire functions are also members of the class C. In this paper we prove that dimâ¡DãXãâ¥2âµ1 for every DâC and that under the continuum hypothesis 2âµ1 is the greatest lower bound of dimâ¡DãXã for DâC. On the other hand, there exists a (finite-dimensional) SFT domain D such that dimâ¡DãXãâ¥2âµ1.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 499, 1 April 2018, Pages 516-537
Journal: Journal of Algebra - Volume 499, 1 April 2018, Pages 516-537
نویسندگان
Phan Thanh Toan, Byung Gyun Kang,