کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8897248 1630736 2019 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classification of metabelian 2-groups G with Gab ≃ (2,2n),n ≥ 2, and rank d(G′)=2; Applications to real quadratic number fields
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Classification of metabelian 2-groups G with Gab ≃ (2,2n),n ≥ 2, and rank d(G′)=2; Applications to real quadratic number fields
چکیده انگلیسی
We characterize all finite metabelian 2-groups G whose abelianizations Gab are of type (2,2n), with n≥2, and for which their commutator subgroups G′ have rank=2. This is given in terms of the order of the abelianizations of the maximal subgroups and the structure of the abelianizations of those normal subgroups of index 4 in G. We then translate these group theoretic properties to give a characterization of number fields k with 2-class group Cl2(k)≃(2,2n), n≥2, such that the rank of Cl2(k1)=2 where k1 is the Hilbert 2-class field of k. In particular, we apply all this to real quadratic number fields whose discriminants are a sum of two squares.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 223, Issue 1, January 2019, Pages 108-130
نویسندگان
, ,