کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8897261 1630736 2019 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On loxodromic actions of Artin-Tits groups
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On loxodromic actions of Artin-Tits groups
چکیده انگلیسی
Artin-Tits groups act on a certain delta-hyperbolic complex, called the “additional length complex”. For an element of the group, acting loxodromically on this complex is a property analogous to the property of being pseudo-Anosov for elements of mapping class groups. By analogy with a well-known conjecture about mapping class groups, we conjecture that “most” elements of Artin-Tits groups act loxodromically. More precisely, in the Cayley graph of a subgroup G of an Artin-Tits group, the proportion of loxodromically acting elements in a ball of large radius should tend to one as the radius tends to infinity. In this paper, we give a condition guaranteeing that this proportion stays away from zero. This condition is satisfied e.g. for Artin-Tits groups of spherical type, their pure subgroups and some of their commutator subgroups.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 223, Issue 1, January 2019, Pages 340-348
نویسندگان
,