کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8897280 | 1630737 | 2018 | 55 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The de Rham Witt complex, cohomological kernels and pm-extensions in characteristic p
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In earlier work the authors determined the Brauer kernel of extensions of degree p in characteristic p>2 where the Galois group is a semidirect product of order ps for s|(pâ1). This result is extended here and tools are developed to compute the cohomological kernels Hpmn+1(Em/F) for all nâ¥0 where [Em:F]=pm and the Galois closure is a semidirect product of cyclic groups order pm and s where s|(pâ1). A six-term exact sequence describing the K-theory and cohomology of the extension is obtained. As an application it is shown that any F-division p-algebra of index pm split in Em is cyclic; a characteristic p analogue of a result of Vishne. The proofs use the de Rham Witt complex and Izhboldin groups, extending techniques developed earlier for the study of degree 4 extensions in characteristic two. The paper also provides background on the de Rham Witt Complex and Izhboldin groups difficult to track down in the literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 222, Issue 12, December 2018, Pages 3891-3945
Journal: Journal of Pure and Applied Algebra - Volume 222, Issue 12, December 2018, Pages 3891-3945
نویسندگان
Roberto Aravire, Bill Jacob, Manuel O'Ryan,