کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8897280 1630737 2018 55 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The de Rham Witt complex, cohomological kernels and pm-extensions in characteristic p
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The de Rham Witt complex, cohomological kernels and pm-extensions in characteristic p
چکیده انگلیسی
In earlier work the authors determined the Brauer kernel of extensions of degree p in characteristic p>2 where the Galois group is a semidirect product of order ps for s|(p−1). This result is extended here and tools are developed to compute the cohomological kernels Hpmn+1(Em/F) for all n≥0 where [Em:F]=pm and the Galois closure is a semidirect product of cyclic groups order pm and s where s|(p−1). A six-term exact sequence describing the K-theory and cohomology of the extension is obtained. As an application it is shown that any F-division p-algebra of index pm split in Em is cyclic; a characteristic p analogue of a result of Vishne. The proofs use the de Rham Witt complex and Izhboldin groups, extending techniques developed earlier for the study of degree 4 extensions in characteristic two. The paper also provides background on the de Rham Witt Complex and Izhboldin groups difficult to track down in the literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 222, Issue 12, December 2018, Pages 3891-3945
نویسندگان
, , ,