کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8897306 1630737 2018 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generators versus projective generators in abelian categories
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Generators versus projective generators in abelian categories
چکیده انگلیسی
Let A be an abelian category. We prove that if A admits a generator M with EndA(M) right artinian, then A admits a projective generator. If A is further assumed to be Grothendieck, then this implies that A is equivalent to a module category. When A is Hom-finite over a field k, the existence of a generator is the same as the existence of a projective generator, and in case there is such a generator, A has to be equivalent to the category of finite dimensional right modules over a finite dimensional k-algebra. We also show that when A is a length category, then there is a one-to-one correspondence between exact abelian extension-closed subcategories of A and collections of Hom-orthogonal Schur objects in A.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 222, Issue 12, December 2018, Pages 4189-4198
نویسندگان
,