کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8897327 1630738 2018 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Homomorphisms preserving neural ideals
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Homomorphisms preserving neural ideals
چکیده انگلیسی
The neural ideal of a binary code C⊆F2n is an ideal in F2[x1,…,xn] closely related to the vanishing ideal of C. The neural ideal, first introduced by Curto et al., provides an algebraic way to extract geometric properties of realizations of binary codes. In this paper we investigate homomorphisms between polynomial rings F2[x1,…,xn] which preserve all neural ideals. We show that all such homomorphisms can be decomposed into a composition of three basic types. Using this decomposition, we can interpret how these homomorphisms act on the underlying binary codes. We can also determine their effect on geometric realizations of these codes using sets in Rd. We also describe how these homomorphisms affect a canonical generating set for neural ideals, yielding an efficient method for computing these generators in some cases.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 222, Issue 11, November 2018, Pages 3470-3482
نویسندگان
, , ,