کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8897510 | 1630741 | 2018 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Dedekind-Mertens lemma and content formulas in power series rings
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For a ring R and gâRãXã, if Ag is not locally finitely generated, then there may be no positive integer k such that Afk+1Ag=AfkAfg for all fâRãXã. Assuming that the locally minimal number of generators of Ag is k+1, Epstein and Shapiro posed a question about the validation of the formula Afk+1Ag=AfkAfg for all fâRãXã. We give a negative answer to this question and show that the finiteness of the locally minimal number of special generators of Ag is in fact a more suitable assumption. More precisely we prove that if the locally minimal number of special generators of Ag is k+1, then Afk+1Ag=AfkAfg for all fâRãXã. As a consequence we show that if Ag is finitely generated (in particular if gâR[X]), then there exists a nonnegative integer k such that Afk+1Ag=AfkAfg for all fâRãXã.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 222, Issue 8, August 2018, Pages 2299-2309
Journal: Journal of Pure and Applied Algebra - Volume 222, Issue 8, August 2018, Pages 2299-2309
نویسندگان
Mi Hee Park, Byung Gyun Kang, Phan Thanh Toan,