کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8897510 1630741 2018 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dedekind-Mertens lemma and content formulas in power series rings
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Dedekind-Mertens lemma and content formulas in power series rings
چکیده انگلیسی
For a ring R and g∈R〚X〛, if Ag is not locally finitely generated, then there may be no positive integer k such that Afk+1Ag=AfkAfg for all f∈R〚X〛. Assuming that the locally minimal number of generators of Ag is k+1, Epstein and Shapiro posed a question about the validation of the formula Afk+1Ag=AfkAfg for all f∈R〚X〛. We give a negative answer to this question and show that the finiteness of the locally minimal number of special generators of Ag is in fact a more suitable assumption. More precisely we prove that if the locally minimal number of special generators of Ag is k+1, then Afk+1Ag=AfkAfg for all f∈R〚X〛. As a consequence we show that if Ag is finitely generated (in particular if g∈R[X]), then there exists a nonnegative integer k such that Afk+1Ag=AfkAfg for all f∈R〚X〛.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 222, Issue 8, August 2018, Pages 2299-2309
نویسندگان
, , ,