کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8897747 1631041 2018 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Schultz matrix iteration based method for stable solution of discrete ill-posed problems
ترجمه فارسی عنوان
روش تکرار ماتریس شولتز برای راه حل پایدار مشکالت گسسته
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی
In this paper, we propose an iterative method for solving discrete ill-posed problems based on matrix iterations generated by Schultz method and known to converge to the Moore-Penrose pseudoinverse of a matrix. Practically, letting the Schultz matrix iteration be Xk, we construct the vector xk=Xkb where b is a data vector. Hence, by construction, the iterates converge to the minimum 2-norm solution of a least squares problem with coefficient matrix A and data vector b. We derive theoretical properties of the sequence xk and show that it is quadratically convergent. In the case of corrupted data, we analyze the semi-convergence behavior of the iterates and conclude that the iteration must be truncated to control the propagation of the noise error. As a result, we derive an error estimate for the case where the truncation parameter is chosen by the discrepancy principle. In addition, combining a projected approach with the new method, we propose variants of the method that are well suited for large-scale problems. Several numerical results are presented to illustrate the effectiveness of the method on well known test problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 554, 1 October 2018, Pages 120-145
نویسندگان
, ,