کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8897747 | 1631041 | 2018 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Schultz matrix iteration based method for stable solution of discrete ill-posed problems
ترجمه فارسی عنوان
روش تکرار ماتریس شولتز برای راه حل پایدار مشکالت گسسته
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
چکیده انگلیسی
In this paper, we propose an iterative method for solving discrete ill-posed problems based on matrix iterations generated by Schultz method and known to converge to the Moore-Penrose pseudoinverse of a matrix. Practically, letting the Schultz matrix iteration be Xk, we construct the vector xk=Xkb where b is a data vector. Hence, by construction, the iterates converge to the minimum 2-norm solution of a least squares problem with coefficient matrix A and data vector b. We derive theoretical properties of the sequence xk and show that it is quadratically convergent. In the case of corrupted data, we analyze the semi-convergence behavior of the iterates and conclude that the iteration must be truncated to control the propagation of the noise error. As a result, we derive an error estimate for the case where the truncation parameter is chosen by the discrepancy principle. In addition, combining a projected approach with the new method, we propose variants of the method that are well suited for large-scale problems. Several numerical results are presented to illustrate the effectiveness of the method on well known test problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 554, 1 October 2018, Pages 120-145
Journal: Linear Algebra and its Applications - Volume 554, 1 October 2018, Pages 120-145
نویسندگان
FermÃn S.V. Bazán, Everton Boos,